This is a fully online version of Math 211 Course. Lectures are fully online in addition to daily meetings via live online streaming. The live online streaming will be also uploaded to our online platform on a daily basis. If you miss a meeting, you can still watch its video and complete its daily assignment.

Instructor: Dr. Betul Orcan-Ekmekci
Time: M-F 10:30-12:00 (Live Online Streaming)
Email: orcan@rice.edu
Class Webpage: Look for MATH 211 Summer2020 on Canvas

Daily Assignments: Daily Videos and Assignments will be posted on Canvas. Assignments are not pledged. You are encouraged to discuss these problems amongst each other via Discussion board on Canvas. Using the solutions manual, calculators or mathematical software is prohibited.

Homework: There are two components of the homework: WebWork and Written HWs.

1. **WebWork Homework** will be due every MWF. It will be assigned through the WebWork website. Each student needs to sign up for a WebWork account and get familiar with WebWork as soon as possible. Most homework problems are to be completed online, and are quite similar to textbook exercises.

 Instructions for the account setup will be announced soon!

 It is strongly recommended that you keep a notebook where you write down complete solutions to the assigned exercises; you can use this notebook to study for exams. Imagine that a fellow student will be reading your homework notebook to study for an exam. If your work is not detailed enough to be useful, it is unlikely to earn much credit if it were being graded. Another student reading your solutions should be able to guess at the question your are trying to answer without referring to the textbook.

2. **Written HWs** problems should be submitted (uploaded) to Canvas. Every Tuesday and Thursday will be due dates of the written HW sets. These problems will be of a nature that cannot be covered by online systems. They will be graded and returned to you in a week after you hand them in.

 The homework is not pledged and you can collaborate with other students in the class. Make sure you understand the solution to a problem before typing in your answer on WebWork.

 Late homework assignments will not be accepted for ANY reason – instead, your three lowest webwork scores and your lowest "paper-assignment" will be dropped.

The no late homework policy is iron clad. There will be roughly 25 assignments. These numbers mean that the only fair policy on late homework is as above.
Exams:

There will be two midterm tests during the semester and a comprehensive final exam. All are take-home exams. Midterm Exams will be on Wednesday, July 22nd and on Wednesday, August 5th.

Final exam: Final Exam will be on the last day of the classes, Friday, August 14th.

Books, notes, and calculators will not be allowed on exams. If an exam conflicts with a holiday you observe, please let me know before the end of the first week of classes.

Grades: Your HWs will count as 20% (10% (Webwork) + 10% (Written)) of your final grade. The remaining portion of your grade will be the maximum of the following four options:

- 25% Midterm I, 25% Midterm II, 30% Final.
- 20% Midterm I, 25% Midterm II, 35% Final.
- 25% Midterm I, 20% Midterm II, 35% Final.
- 20% Midterm I, 20% Midterm II, 40% Final.

Expectations: I expect you to complete assignments on a daily basis and inform me about your process. It is your responsibility to keep informed of any announcements, syllabus adjustments, or policy changes made during the semester. All announcements will be posted on the website.

Disability Support: Any student with a documented disability seeking academic adjustments or accommodations is requested to speak with me during the first two DAYS of class. All such discussions will remain as confidential as possible. Students with disabilities will need to also contact Disability Support Services in the Allen Center.
Tentative Schedule and Exam Dates:

<table>
<thead>
<tr>
<th>Week</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1, 1.2, 1.3, 1.5, 2.1, 2.2, 2.3, 2.4</td>
</tr>
<tr>
<td>2</td>
<td>3.1, 3.2, 3.3, 3.4</td>
</tr>
<tr>
<td>3</td>
<td>3.5, 3.6, 4.2, 4.3, 4.4, 4.5, 4.6</td>
</tr>
<tr>
<td>4</td>
<td>6.1, 6.2, 6.3, 6.4, 6.7</td>
</tr>
<tr>
<td>5</td>
<td>2.6, 7.2, 8.1, 8.2</td>
</tr>
</tbody>
</table>

Midterm I: Wednesday, 7/22
Midterm II: Wednesday, 8/5
Final: Friday, 8/14

Table Of Contents:

Section 1.1: Dynamical Systems: Modeling
Section 1.2: Solutions and Direction Fields: Qualitative Analysis
Section 1.3: Separation of Variables: Quantitative Analysis
Section 1.5: Picard’s Theorem: Theoretical Analysis
Section 2.1: Linear Equations: The Nature of Their Solutions
Section 2.2: Solving the First-Order Linear Differential Equation
Section 2.3: Growth and Decay Phenomena
Section 2.4: Linear Models: Mixing and Cooling
Section 2.6: Systems of Differential Equations: A First Look
Section 3.1: Matrices: Sums and Products
Section 3.2: Systems of Differential Equations
Section 3.3: The Inverse of a Matrix
Section 3.4: Determinants and Cramer’s Rule
Section 3.5: Vector Spaces and Subspaces
Section 3.6: Basis and Dimension
Section 4.2: Real Characteristic Roots
Section 4.3: Complex Characteristic Roots
Section 4.4: Undetermined Coefficients
Section 4.5: Variation of Parameters
Section 6.1: Theory of Linear DE Systems
Section 6.2: Linear Systems with Real Eigenvalues
Section 6.3: Linear Systems with Nonreal Eigenvalues
Section 6.4: Stability and Linear Classification
Section 6.7: Nonhomogeneous Linear Systems
Section 7.1: Nonlinear Systems
Section 7.2: Linearization
Section 8.1: The Laplace Transform and Its Inverse
Section 8.2: Solving DEs and IVPs with Laplace Transforms